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Reconstruction of a first-order phase transition from computer simulations
of individual phases and subphases
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We present a method for investigating first-order phase transitions using Monte Carlo simulations. It
relies on the multiple-histogram method and uses solely histograms of individual phases. In addition, we
extend the method to include histograms of subphases. The free energy difference between phases,
which is necessary for attributing the correct statistical weights to the histograms, is determined by a de-
tour in control parameter space via auxiliary systems with short relaxation times. We apply this method
to a recently introduced model for structure formation in polypeptides for which other methods fail.
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At first-order phase transitions, Monte Carlo (MC)
simulations encounter a particular problem of critical
slowing down: since transitions between the coexisting
phases are very rare, the relaxation time is extremely long
and usually increases exponentially with system size. To
obtain equilibrated data via MC simulations for a system
of appreciable size near the transition, prohibitively long
simulations would have to be performed.

A convenient way to visualize the problem, as well as
to analyze simulation results, is to employ histograms.
Since the Hamiltonian and most observables of interest
are functions of one or a few order parameters, such as
magnetization or internal energy, a histogram of the fre-
quency of their occurrence, recorded during the simula-
tion, is sufficient to generate all information of interest.
Using the single- and the multiple-histogram method
(SHM/MHM) [1], one or several histograms determined
for a system at specific sets of control parameters can be
used efficiently to predict the system behavior over a wide
range of control parameter values. In such histograms
the coexistence of phases corresponds to the coexistence
of several peaks; see, e.g., Fig. 1. The infrequent switch-
ing between individual phases makes it difficult to gen-
erate a single equilibrated histogram covering all phases,
i.e., showing all peaks correctly.

Most approaches to this problem introduce suitable
changes to the system Hamiltonian so that transition
states, which are encountered only rarely in the original
system, will be sampled much more frequently in a simu-
lation, thereby leading also to a higher frequency of
switching between phases [2-5]. Common to all these
methods is the idea that in a single simulation a histo-
gram can be determined that covers all interesting re-
gions of state space. A drawback is that possibly a
plethora of parameters, which render the necessary
changes in the system Hamiltonian, have to be optimized.

In this paper we want to present another approach to
the problem. It is based on the realization that an equili-
brated histogram of a system confined to an individual
phase, i.e., an individual peak in the full histogram, can
be generated much more easily. Under those conditions
the relaxation times are usually small, at least much

1063-651X/96/53(4)/3365(4)/$10.00 53

smaller than the switching times between phases in the
critical regime. For a first-order phase transition, these
single-phase histograms already cover all relevant system
states because, even at the critical point, transition states
between the phases are encountered only very infrequent-
ly, and hence their contribution to the partition function
is negligible. Several single-phase histograms can then be
combined by the MHM to reconstruct the complete his-
tograms at or near the first-order transition.

However, there is a technical problem involved: the
relative contributions of various histograms, in effect the
free energy differences between them, have to be deter-
mined. This is a notoriously difficult task. A prerequisite
for their correct determination, e.g., by the acceptance
ratio method (ARM) developed by Bennett in his
definitive treatment of the subject [6], is that the histo-
grams in question overlap at least partially. This is usual-
ly not the case, particularly not for systems with strong
first-order transitions. To overcome this difficulty, we use
a detour in control parameter space via auxiliary systems
with much shorter relaxation times, which resemble the
actual system to an extent sufficient to guarantee
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FIG. 1. Reconstructed histogram for L =40, B|Eyp|=3.4
(transition region), projected onto the (F, N, ) plane.
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significant overlaps between actual and auxiliary histo-
grams [7]. We will apply this scheme to the
temperature-driven first-order phase transition in a re-
cently introduced simple model of secondary and tertiary
structure formation in polypeptides [8], where the
methods of Refs. [2-5] fail.

The conformation of a polypeptide of length L is
represented by a string of local conformations o; =h, ¢ *,
or ¢% i=1,...,L. The local conformation A corresponds
to residues with dihedral angles characteristic of a hel-
ices. Any three successive monomers in helical confor-
mation are spanned by a hydrogen bond (HB) with ener-
gy Eyg <0. A string of / consecutive A residues (/= 3)
forms a helix of length I. The ¢ and ¢ residues denote
random coil conformations. Two helices separated solely
by c° residues are taken to interact with each other,
whereas helices with at least one residue with conforma-
tion other than c° between them are not. The number of
contacts between two interacting helices, which deter-
mines the interaction energy, is taken to be equal to the
length of the shorter helix. We set the interaction energy
parameter to k =0.6 Eyg. Since the conformation space
volume Q(4) accessible to A residues is smaller than that
for non-# residues, the conversion ¢ *<>h, for example, is
accompanied by a change in conformational entropy. We
define AS(o;)=kgzIn[Q(0;)/Q(c")] and assume equal
statistical weights for the two random coil conforma-
tions, i.e., AS(c®)=AS(c *)=0. The helix-coil transition
in experimentally studied homo(poly)amino acids is ade-
quately described by a value of AS(h)/ky
=—4.26+1In(2)= —3.57, derived from experimental
data first discussed by Zimm and Bragg [9].

Using the order parameter vector of a chain conforma-
tion {o;}, S({o;})=[Nyxp({o;}),N,({o;}),N.({o;])],
where Nyg, N,, and N, denote the number of hydrogen
bonds, 4 residues, and contacts, respectively, and the cor-
responding control parameter vector K=[BEys,
—AS (h),Bk ], with B=(kzT)™!, we obtain a free energy
of the conformation {o,}, '

BF({o;})=K-S({o;}) . (1

The role of F is equivalent to that of a Hamiltonian in
other models.

This model has a coil-dominated high-temperature
phase and a helix-dominated low-temperature phase. For
k =0 the low-temperature phase is a single helix spanning
the whole system, and the change from coil to helix is not
accompanied by a phase transition [10,11]. For k <O,
however, the low-temperature phase is multihelical, with
neighboring helices stabilizing each other via tertiary in-
teractions, and the transition between the coil and the
multihelical phases is first order.

The multihelical phase consists of several subphases
characterized by different numbers of helices. These sub-
phases are separated from each other and from the coil
phase by significant barriers in F, a feature that leads to
long relaxation times at the transition point as well as to
a slow, glasslike relaxation within the multihelical phase
[8]. The existence of these subphases indicates that, in ad-
dition to the order parameters that enter the Hamiltoni-
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an, Eq. (1), the number of helices of a conformation {o,},
Nypg({o;}), is an additional relevant order parameter; see
also Fig. 1.

To investigate the behavior of this system at and
around its phase transition point we generated order pa-
rameter histograms, ng (S), from MC simulations for pa-
rameter sets K corresponding to the coil and the mul-
tihelical phase for various values of L. For L =40, addi-
tional simulations close to the phase transition point were
performed for a check of the method. We provide the
respective parameters and histogram properties for that
length in Table I.

With the use of MHM [1], the relative probability to
find the system at parameter set K in a state with order
parameter S, Py (S), can be approximated from histo-

grams obtained at the parameter sets K;, i=1,..., M,
by
M
vzg,-"ln,-(S)exp[——K-S]
Pg(8)=——"— : )
zlgj_leexp[—Kj-S+f(Kj)]
j=

Here, N;=3¢n,(S), and g; =127, renormalizes the size
of the histogram to take correlation effects into account,
with 7; being the correlation time of the simulation i. By
S(K) we denote the free energy of the system at parame-
ter set K, exp[—f(K)]=Z(K)=34Pk(S), which is
determined only up to an additive constant.

We have argued above that, using Eq. (2), histograms
of the coil and the multihelical phase (histograms 1 and 3
of Table I) suffice to reconstruct the first-order phase
transition. However, this requires the knowledge of the
free energy difference between these histograms. Apply-
ing Bennett’s ARM [6] to the model studied here leads to
the equation

(F[S-(K;,—K;)+C]),

Ay =TS K, —x,)—cp, T <

(3)

TABLE I. Histograms, L =40.

B Size Correlation
(|IEggl™") (10° MC steps) Phase time (MC steps)

Histograms, AS(h)/ky=—3.57

1 2.66 10 random coil 5
2 3.43 600 mixed 10°
3 3.96 50 multihelical 330
Auxiliary histograms, AS(Ah)/kz=—0.57
la 0.16 10 random coil 0.5
2a 1.16 50 mixed 30
3a 1.56 20 multihelical 12
Subphase histograms, AS(h)/kz=—3.57
3.2 3.96 5 Ny =2 22
33 3.96 5 Npyg=3 15
34 3.96 5 Nia=4 10
3.5 3.96 5 Ny =5 10
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where Af;=f(K;)—f(K;), and C= In(Z;N,/Z;N;)
has to be determined self-consistently. F(x)=1/
[14+exp(x)] is the Fermi function, and (x ); denotes the
average of x with respect to histogram i. To apply Eq.
(3), the two histograms in question have to overlap at
least partially, which is not the case for the single-phase
histograms 1 and 3. Bennett has already pointed out the
possibility of obtaining free energy differences for disjoint
histograms by performing additional simulations for in-
termediate parameter sets so as to form an overlapping
chain of histograms. However, a simulation near the
critical point is not feasible in general.

In our model we can exploit the property that, by
changing the parameter AS(h) to less negative values,
systems are obtained that exhibit significantly shorter re-
laxation times and a more gradual transition. For such
systems, equilibrated histograms can be generated for the
separate phases and in the transition region (see Table I)
at a much smaller expense of computation time than for
the original system. With the use of such auxiliary histo-
grams, a sequence of mutually overlapping histograms
can be formed to join the single-phase histograms of the
original system. This allows the determination of Afj,
between the disjoint histograms 1 and 3 of Table I by re-
peated application of Eq. (3), as illustrated in detail in
Table II. For comparison, the value of Af;; determined
using histogram 2 of Table I as the intermediate histo-
gram is also given in Table II. Both values agree closely.
However, the expected error for the latter value is
significantly larger because of the long relaxation time for
the simulation near the critical point.

It was already noted that the multihelical phase is also
characterized by long relaxation times, here due to infre-
quent switches between various coexisting subphases
characterized by different helix numbers. These relaxa-
tion times become prohibitively long, particularly for sys-
tems with larger sizes (we have studied systems up to
L =200). With minor modifications, it is also possible to
apply the principles we used to reconstruct the histogram
at the phase transition for a reconstruction of histograms
within the multihelical phase. Histograms for helical
subphases with a constraint in helix number N, can be
generated with much smaller computational effort than
for the full histogram; see Table I. They are obtained
simply by introducing an infinite energy barrier for all
steps that attempt to change the helix number during the
simulations.

TABLE II. Af, L=40, according to Eq. (3). Root mean

square deviation (RMSD) according to Bennett [6].

Histograms Af RMSD
1/2 —1.627 0.12
2/3 —22.886 33x107?
3:1/3 —24.513 0.12
1/1a —9.501 5X1073
la/2a —3.828 5x107*
2a/3a —14.742 4x10~*
3a/3 3.569 2X1073
3:1/3 —24.502 5.4X1073
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In direct analogy to the multiple-histogram equation,
Eq. (2), it is possible to combine several subphase histo-
grams n;/(S) with identical helix number N,,=a, ob-
tained at various parameter sets K;, i =1,...,M. The rel-
ative probability within this subphase of a system state S
(with N, =a), at parameter set K, is approximated by

M
> (g8 'nf(S)exp[ —K-S]

i=1

k(8)=— . (4)

3 (g/) 'Nfexp[ —K;-S+f%K;)]
j=1

Here, the sum in the denominator ranges only over sub-

phase histograms with N, =a. We note that the free en-

ergies f%K;) in Eq. (4) have now to be calculated with

respect to subphase histograms with Ny =a only.

These subphases histograms can now be combined,
again using ideas of the MHM. Following the arguments
in Ref. [1], and using the property that the subphases ful-
ly partition the order parameter space into disjoint
patches, one arrives at

P (S)=Sp&P%(S) (5)

for the combined histogram. Given a full histogram of
an auxiliary system at some convenient parameter value
K’, one obtains for the relative contribution of subphase
a, pk in Eq. (5),

Pk =pk explfUK)—f4K"], 6

where p%. is given by pg =S gnk (8)/Ssnk (S).

Using the methods described we have investigated the
first-order transition of our model. Contrary to other ap-
proaches [12], we choose the fluctuations of the specific
energy e =(NypEyg+N.k)/L,ie.,e,=((e—(e))?),as
the observable to monitor the transition [13]. For first-
order transitions the peak of this function assumes a finite
nonzero value in the thermodynamic limit, which is given
by €3 max =(Ae )2/4, where Ae is the specific latent heat.
Figure 2 shows the behavior of e, for various values of
the system size. For L =40 the curves deriving from his-
togram 2, from the combination of histograms 1 and 3,
and from 1 together with 3.2 to 3.5, respectively, all coin-
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FIG. 2. Fluctuations in specific energy, e, = {((e—(e))?), vs
B for L as indicated; also shown is the extrapolation for L — oo.
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cide, thereby confirming our approach. For the longer
systems, subphase histograms for the helical phase were
used invariably. Included in the figure is the extrapolated
function for infinite system size, corresponding to a latent
heat of Ae =1.37 Eyg and a transition at $=2.78 Eyg.
In closing, we will briefly discuss why other methods
proposed for obtaining simulation results for first-order
phase transitions fail in our system. Because of the high
dimensionality of the order parameter space and the com-
plicated phase structure (compare Fig. 1), the straightfor-
ward identification of a—possibly small number—of
transition states in order parameter space, necessary for a
successful application of the multicanonical method [2],
is impossible. In addition, the states corresponding to the
individual phases occupy only an extremely small part of
the order parameter space. By raising the temperature,
as in the entropic sampling [3] and simulated tempering
[S] methods, not only the transition states but also an
enormous number of ‘“‘uninteresting” states would be-
come accessible. To suppress these states at higher tem-
peratures, a prohibitively large number of parameters (of
the order of 10° for L =100) would have to be optimized.
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The microcanonical ensemble approach promoted by
Hiiller and co-workers [13,14] or cluster dynamics ap-
proaches [4,15] are also not applicable in our case.

We believe that the approach presented here offers pos-
sibilities for investigating model systems in parameter re-
gimes where relaxation times are too long to allow equili-
brated MC simulations, such as at strong first-order tran-
sitions or at glass transitions and within the glass phase.
A prerequisite for the successful application of the
method is the existence of a detour in control parameter
space with a more gradual transition, i.e., much shorter
relaxation times, so that the necessary free energy
differences can be determined. To apply the subphase
method, Egs. (4) to (6), there has to be an order parame-
ter set that allows one to identify subphases unambigu-
ously.
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